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We obtain a solution of new general relativity from a solution of Einstein's general 
relativity which includes many known solutions, such as Kerr-Newman-Kasuya, 
Kerr-Newman, Kerr, and NUT, as special cases. 

1. ~ T R O D U C T I O N  

Hayashi and Nakano (1967) and Hayashi and Shirafuji (1979) obtained 
a new gravitational theory which is usually known as new general relativity 
(NGR). A feature of this NGR is absolute parallelism, the notion of which 
was first introduced by Einstein (1928a,b; 1929a,b; 1930a,b). Thus the space- 
time of NGR is the Weitzenbock spacetime characterized by the metricity 
condition and by the vanishing of the curvature tensor. NGR describes all 
the observed gravitational phenomena observed in general relativity (GR). 
The Schwarzschild solution, Reissner-Nordstrom solution, and Weyl solution 
in GR are known in NGR (Hayashi and Shirafuji, 1979). According to 
Fukui and Hayashi (1981), stationary axially symmetric solutions of NGR 
are different from those of general relativity, but they have no explicit solution. 
On the other hand, recently stationary axially symmetric solutions of GR 
such as the Kerr and Kerr-Newman solutions have also been found in NGR 
(Toma, 1991; Kawai and Toma, 1992). 

We believe that not only can Kerr and Kerr-Newman solutions of GR 
be found in NGR, but also the other solutions of GR which are not black 
hole solutions but have the common feature with the black hole solutions 
that they have horizons can be found in NGR. 
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In GR, a solution endowed with angular momentum, mass, and electric 
and electromagnetic and gravitational magnetic monopole parameters is 
known (McGuire and Ruffini, 1975). Hereafter this solution will be called 
the McGuire-Ruffini (MR) solution. The gravitational magnetic monopole 
parameter in MR solutions has been referred to as the NUT parameter (Demi- 
anski and Newman, 1966). 

The MR solution is not a black hole solution. But it includes Kerr-  
Newman black hole solutions as a special case. It also includes the NUT 
solution as a special case which possesses very interesting properties. 
Although the MR solution is not a black hole solution, it has the common 
feature with the black hole solutions that it has horizon. 

In this paper, we obtain a solution of NGR from the MR solution in GR. 

2. BASIC F O R M U L A T I O N  OF N G R  

In NGR, the fundamental fields of gravitation are the parallel vector fields 

0 
bk = b ~ -  

0x ~ 

characterized by 

where 

D*~b~ = O~b~ + F ~ b  x = 0 (2.1) 

F ~  = b~'O,,b k (2.2) 

are the affine connection coefficients. The components of the metric tensor 

g = g~v dx  ~ | dx  ~' 

are given by 

k l g~.,~ = b~ rlktb~, (2.3) 

with 

(-q~ = d iag( - ,  +,  +,  +)  

The gravitational Lagrangian in NGR is constructed with the torsion tensor 

Tar x k = bk(b~b.  - O~b~) (2.4) 

In the units such that h -- c = 1 the Lagrangian 

1 ( t ~ x t ~  • _ v~v~ ) + ~a~a ~ (2.5) L = -3--K 
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used in this paper is quite in conformity with experiment (Hayashi and 
Nakano, 1967). 

In (2.5), K is the Einstein gravitational constant, ~ is a real, constant 
parameter, and t~x, v~, and a~ are irreducible components of the torsion tensor: 

1 
t ~  = ~ ( T ~  + T ~ )  

1 (  1 )  
+ -6 g ~ v ~  + g~,v~ - -~ g~vx  (2.6) 

v,  = TX~ (2.7) 

1 
a~ = -~ ~.l~vpo.T vp'r (2.8) 

Here %,p~ is the totally antisymmetric tensor normalized to %~23 = 
- , f L - g  with g = det(gCv). 

The electromagnetic Lagrangian density is given by 

1 
Lem - 4 g~~ (2.9) 

where 

F~,, = O~A,, - O,A~ (2.10) 

Here A~ is the electromagnetic vector potential. 
The gravitational and electromagnetic field equations described by Lo 

+ Lem are given by 

G~({ �9 }) + K ~ = ~T ~ (2.11) 

O~(~-L-gJ ijr~) = 0 (2.12) 

O~(.r  = 0 (2.13) 

G~({ �9 }) in (2.11) is the Einstein tensor: 

1 
G~({ �9 }) = R~,({ �9 }) - ~ g ~ R ( { .  }) (2.14) 

where 

Rr }) = R~w({" }) 

= a ~ { c r p v }  - or{oS} 

+ {Tpt~}{cr~v} - {'rpv}{cr;} (2.15) 
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with 

and 

1 
{o'Pv} = ~ gOX{O,~gvx + Ovg~r x - Oxg,rv} 

R ( { .  }) = }) 

T ~" in (2.11) is the energy-momentum tensor given by 

Tr = FO.PF~,~gp,, + g~VLem 

The tensors K "~ in (2.11) and Jq~ in (2.12) are defined by 

3 ] - -~ a~a ~ - -~ g~aXa• 

and 

where 

jij~ -=. __3 h i  h J  t:Ptrttl'n 
~ p v  r ~lr 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

4 1 (2.21) 

3. AN EXACT SOLUTION 

Having now completed the preliminaries in Section 2, we now turn 
our attention to obtaining an exact solution of the field equations given 
by (2.11)-(2.13). 

We seek a solution which will satisfy the conditions 

a e 2 
b~ = ~ + -~ lkl~ -- -~ mkm~ (3.1) 

and 

g~'P g"~ Fp,~ = "q~P'~"~ Fp,~ (3.2) 

where a and e 2 are arbitrary constant parameters and l~ and m~ are quantities 
satisfying the relations 
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"qr = O, "qr = O, "qr162 = 0 (3.3) 

and l k and m k a r e  defined as 

l k ---- 8~'q~l,,, m k = 8 ~ " m ~  (3.4) 

By "q~, "q~ we will raise and lower the indices in l~ and m~ and by .qkl, "qkl 
in l k and m k. 

We have from equation (3.3) 

m~ = ~l~ (3.5) 

with ~ being a function of x. We also have from equation (3.2) 

F~,,m" = Arn~ (3.6) 

with A being a function of x. From equations (2.4) and (3.1), we have 

Tx~,, = aOt~,(l~jlx) - e2Ot~,(mo.lmx) (3.7) 

which gives the vanishing axial vector part 

a~ = 0 (3.8) 

Then equation (2.11) reduces to 

G~({ - }) = KT ~v (3.9) 

Equation (3.9) is identical with the Einstein equation in GR and equation 
(2.12) is trivially satisfied. Equation (2.13) reduces to 

O,,F ~" = 0 (3.10) 

as g = - 1  in the present case. 
Following the same method as that in Kawai and Toma (1992), we have 

(l~) = v/a(1, kl, 12, h3) (3.11) 

K q 
(A~) = 4-'tr ~(1, X1, h2, X3) (3.12) 

~2a = ~ *  (3.13) 

m~/ q (3.14) 
a -  4"rr' e = 4--~ 
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where M is the gravitational mass of  a central gravitating body and q represents 
the electric charge, 

a = Re(~), k = (Xl, •2, h3) (3.15) 

2 Re(~2V~ *) + iV~ • V6* 
X = (~ , )2  + V~-V~* (3.16) 

1 
(r  2 _ ~ + 2 i , f ~  x3)a/2 (3.17) 

and 

r = [(xl) z + (x2) z + (x3)2] 1/2 (3.18) 

~/is a real parameter related to the angular momentum per unit mass h by 
the relation h 2 = "y - gZ + l z, where g and l can be interpreted as the magnetic 
charge (monopole) and the magnetic mass (NUT) parameters, respectively. 

The metric in which we are interested is generated in the same way as 
the Kerr-Newman metric in NGR is generated. The only difference is that 
the angular momentum per unit mass parameter h in the Kerr-Newman 
metric will be replaced according to the relation h 2 = ~ - g2 _ 12. The 
justification behind using the relation ~/ - g2 + l z in the place of h z is that 
the MR solution in GR can be generated from the Kerr-Newman solution 
in GR with the replacement of h 2 by ~ - g2 + 12 and E = p2 + h 2 cos20 
in the Kerr-Newman metric by 

X = ~2 + (1 - , / ~  cos  0) 2 

With the coordinate transformation from (x w) to (t, p, O, d~) defined by 

a 2 (  e2) 
a l n l A  I + 1 - 8 

x I = ( p c o s ~ +  ~ s i n q b )  s in0  

x 2 = ( p s i n ~ -  ~ c o s ~ ) s i n 0  

x 3 = p cos 0 

qb = qb + ,f~B (3.19) 

where 

= + + (3.20) 

A = p2 + , y _ a p  + e 3 (3.21) 
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B = (3.22) 

the metric and the electromagnetic potential can be written as 

ds 2 _ _  '~ sinZO - A dfl 
X 

2 x/~(p 2 + "~ - A) sin20 
+ ~, dt d+ 

+ (p 2 + y)2 _ A7 sin20 

X 
sine0 d(~ 2 

+ ~ dp 2 + ~ d0 2 (3.23) 

and 

A = A t dt + A o dp + Ao dO + A+ d~ 

- qP (dt + c~ sinZ 0 d~b) (3.24) 
4~X 

where 

X = p2 + (1 - ~ c o s  0) 2 (3.25) 

To obtain expression (3.24) from A~ of  equation (3.12) we used a U(1) gauge 
transformation. The parallel vector fields bk~ are expressed as 

b ~ = 1 ap - e 2 
2X 

ap -- e 2 
b ~  A 

b ~ = 0 

b,~ = v/~(aP - e2) sin20 
2X 

b~ - ap - e_____~ 2 
2E sin 0 cos 

bPl = Ts in  0 (pX ap 2- ez - -  cos ~ )  
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b~ = X cos 0 

b~ = - Y  sin 0 + , f~ (ap  - e:) sin30 cos 
2E 

b~ - ap - e~ 2~ sin 0 sin 

b o E = s i n 0 (  ap-e__..~ 2 �9 ) 
PY 2 sm 

b02 = Y cos 0 

b ~ = X s i n 0 +  ~ ( a p - e  2) 2~  sin30 sin 

bt 3 _ ap - e~ 2E cos 0 

c o s 0  

b 3 = - p  sin 0 

b~ - v/~(aP - e2) sin20 cos 0 
2E 

(3.26) 

where X and Y are given by 

X =  p c o s ~  + , 4~s in  

Y =  p s i n ~ -  ~ c o s  

(3.27) 

Thus a solution o f  NGR is obtained. In GR this solution corresponds to 

(~) = 

(, ap -- e 2 0 0 p -- e:) sin20 ap -- e 2 
- - - -  ap -~  e z 1 ~ . ! 

0 0 

0 0 

0 0 
( A~ ) 1/2 

0 ~ -- ap + e ~ sin 0 

(3.28) 
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The metric given in (3.28) is related to b~ of equation (3.27) through a local 
Lorentz transformation. Hence we have obtained a solution of NGR from a 
solution of GR by choosing a local Lorentz transformation such that the axial 
vector part of the torsion tensor made of the parallel vector field vanishes. 

The solution given by (3.28) corresponds to: 

(i) Kerr-Newman-Kasuya spacetime when l = 0. 
(ii) Kerr-Newman spacetime for g = l = 0. 
(iii) Kerr spacetime in the case of e = g = l = 0. 
(iv) NUT spacetime when "y = e = g = 0. 

4. R E M A R K S  

From this work it appears that any solution of GR having a Killing 
horizon can be transformed into a solution of NGR. 
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